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Abstract ., /

A set of second order elliptic partial differential equations0
for the generation of three-dimensional curvilinear coordinates

9between two arbitrary shaped bodies have been proposed! The resulting

Mequations have only two independent variables and therefore require

an order of magnitude less working core capacity than when the equa-

tions depending on all the three independent variables are considered.

The resulting equations have been programmed for rhe numerical

solution of the equations on the Cray-computer. Much of the time has

been spent on the generation of surface coordinates for an aircraft

fuselage by spline and various other methods. Once these surface

-coordinates have been accurately established, the proposed field equa-

tions will be solved for the region between the fuselage or other body

and another arbitrarily selected outer surface (e.g., a sphere). The

spline method of the body-coordinates is discussed below.

It has been established that spline interpolation can be used

to construct a computational grid about a simple wing-fuselage con-

figuration. For generality, the components of the configuration are
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defined by algebraic equations. Thus the major dimensions of the body

can be modified by changing only a few input parameters. The progress

in this area is summarized in the attached manuscript which has been

accepted for presentation at Mathematical Modeling in Los Angeles,

July 29-31.

There are many surface description routines available which are

used in the design of aircraft and other complex bodies. A more

recent effort is to take one of these routines and build a computational

grid about the body using the given surface description. The work in

this area has been mainly in reprograming and little tangible results

can be reported at the present time.
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A Method for the Generation of General Three-Dimensional
Coordinates Between Bodies of Arbitrary Shapes*

by

Z. U. A. Warsi
t

Department of Aerospace Engineering
Mississippi State University
Mississippi State, MS 39762

Abstract

Analytical development of a set of second order elliptic partial

differential equations for the generation of three-dimensional curvi-

linear coordinates between two arbitrary shaped bodies is presented.

The resulting equations have only two independent variables and therefore

require an order of magnitude less working core capacity than when equations

depending on all three independent variables are considered. The method

also allows, in a straight forward manner, the possibility of coordinate

contraction in the desired regions.

An exact solution of the proposed equations for the case of an inner

prolate ellipsoid and an outer sphere with coordinate contraction is pre-

sented to demonstrate that by using these equations it is possible to

generate three-dimensional coordinates between analytically specified

surfaces of simple forms by analytical means.

The fundamental constraining equations which have been adopted for

the generation of coordinates are A = 0 and A2n = 0, where A2 is the

surface Beltrami operator of the second order.

*Research supported in part by the Air Force Office of Scientific

Research, under Grant AFOSR No. 80-0185.
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1. Introduction

At present a number of techniques are under active development

for the generation of three-dimensional body-oriented coordinate systems

for use in the numerical solution of the Navier-Stokes equations and

other field equations where the exact specification of the boundary

conditions is of prime importance. Among these efforts two easily dis-

cernable groups can be formed, (i) algebraic methods, and (ii) the

elliptic equations method. In the first group the grid points in space

are obtained by some interpolation or blending functions scheme which

depends on the given boundary data. The choice of the interpolation

scheme or of the blending functions is crucial in achieving a desired

order of smoothness and distribution of the grid points in space. This

line of effort has actively been considered by Eiseman [1,2], Smith and

Weigel [3.], and Eriksson [4]. In the second group of efforts, a set of

three poisson equations in the curvilinear coordinates are first inverted

and then solved for the Cartesian coordinates under the prescribed values

at the given boundaries. Thus in essence all the methods of the second

group are a straight forward extension of the work of Thompson et al [5]

in two dimensions. Research in this area has been conducted by Mastin

et al [6], Yu [7], Ghia et al [8], and Graves [9].

At this stage of research it is premature to compare the two groups

since neither of them have been fully investigated for their inherent

potentials. However, based on the success of the differential equations

approach in two dimensions, e.g. [5], it is desirable to further investi-

gate the elliptic equations approach for the generation of coordinates.

The elliptic equations approach presented in this paper is different

from the approaches adopted in the previously cited works, i.e., References
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[6] - [91. The proposed method depends heavily on the formulae of

Gauss and on the concept of principal curvatures of a surface. It has

been shown that a fruitful arrangement of the classical differential-

geometric results can yield a method which is easily programmable on a

computing machine, and which at any time solves a two-dimensional

partial differential equation of the form used in Ref. [5). In this

paper only the theoretical development of the method along with a tech-

nique to redistribute the coordinate surfaces near the inner boundary

surface has been considered. The developed equations have been solved

for the generation of three-dimensional coordinates between an inner

prolate ellipsoid and an outer spherical surface in an exact analytic

form.
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2. Notation and Collection of Formulas

23.In what folws h general coordinates are denoted as x (i

2,3) Hoeve whn a expesson as eenexpanded out In full and there

inouse for an index notation, we have set

=i X * 2  X3

The derivatives of the position vector r (x,y,z) are denoted as

axi I ij axi x

The covariant components of the metric tensor are

9 *rj (2.1)

while the. contravariant components are given by

9 g kj 1 (2.2)

Thus in three dimensions

g =det(g..j)

9 g1 1922g3 3 + 2g 1 2gl3g2 3 -(9 2 3)
2g911 -(8 13)

2g92 2 -(g 12 )
2g93 3  (2.3)

Writing

Gl 1 g 2 2g33 -(932

G 2 1 1g33 - (91 3) 
2



G3 " gllg2 2 - (gl2)
2

G4 = g13g23 - gl2g33

G5 = g12g23 - g13g22

G 6 = g1 2 g1 3 - gllg23 (2.4)

we have

g = G1 /g , g2 2 = G2/g , g
3 3 = G3/g

(2.5)

g12 = G4/g , g1 3 = G 5/g , g
2 3 = G6/g

The Christoffel symbols based on the metric gij are

r = g [jk,P-]
jk

where

[jk,] = jk • r (2.6)

2k +
2 ax k ax ax

and repeated lower and upper indices imply summation. In the sequel we

have also used the surface Christoffel symbols which have been denoted as

Ta. where the Greek indices range over (1,2) or (3,1) or (2,3).

The coordinate which is held fixed to account for the surface geometry

is denoted by a superscript in parentheses. Thus the unit normal vector

on the surface v = const. is given by

5



n (r x /Ir x rI (2.7)

where

v 1 a = 2 , 0 = 3 (surface xi = const.)

v = 2 : a = 3 , = 1 (surface x2 = const.) (2.8)I = 3 : = , = 2 (surface x3 = const.)

The rectangular Cartesian components of n(v) are denoted as

n ( V) = (X(v) ,(v) Z()) (2.9)

The coefficients of the second fundamental form are denoted by

S " 5 , TO') and U( ) defined as

S ) = n(v) • r (no sum on a)

T(  = n(v) . r  (2.10)

u(v) n (V) r (no sum on 0)

where (v,a,) are in the cyclic permutations of (1,2,3), in this order.

The partial derivatives of the second order are expressible in terms

of the first order as

lij = k (2.11)

For a surface on which one of the coordinates is fixed, the Gauss'

equations are

.. 6



: r =TY  r + S(V)n (V)

r -Tsr + T(v)n(v) (2.12)

r=-T~r Y + U(v)n(v)

Where (v,a, ) are in the permutational sequences of (1,2,3) as shown in

(2.8), and the repeated index y implies summation on the two indices of

a surface.

The sum of the principal curvatures of the surface v = const. is, [10],

k + k(v) = (g U(V) - 2g T + g S( )/G (2.13)
1 2 a - 2v

where in writing equation (2.13) for a particular value of v, use must be

made of Eqs. (2.8) and (2.10). We now introduce two second order surface

differential operators by using (2.8), which for v = const. are

D(V) -g - 2g a + ga (2.14)
00 act n a a aa

A(v) - 1.L[a {-'_(g a 9 a
2 /G- a - a a

V V

+ 1-{-4 _(g a a ga )}] (2.15)

V

As is well known, the operator A2 is the Beltrami differential operator

of the second order [10].

The three space Christoffel symbols which have been referred to in

the next section are given below.



-L [. 1 . .. *--ollJ4II I II I .. . .. ~

S 3g1 1  a81 2  ag11
1 2gG 5  3" + 66(2 

G3

+ g(X x + y y + z z) (2.16)

3 i2 gll ag2 2
12 --2g 5 +an 6 3

+ -(x C i  + y n yr + z (2.17)

r3  =kI[ (2- g1 - 'g22) + G 3
22 2g 5 all a 6 an

+ (x x +y y + z z) (2.18)
g ni nriYc nn

-1I
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3. Formulation of the Problem

The principal idea of the method to be presented is to generate a

series of surfaces on each of which a certain a'priori chosen variable

or coordinate is kept fixed. Each surface to be generated starts from

a-given curve of the inner body and ends on the corresponding curve of

the outer boundary, cf. Fig. 1. A routine, preferably a spline fit,

can then be used to join the successive generated surfaces so as to have

a smooth three-dimensional computational net for solving other physical

field equations.

To illustrate the method, we take v 3 or x 3 
= = constant on each

surface to be generated. Thus a = 1 and = 2, viz., a and B respectively

correspond to the coordinates x I = E and x 2  q1. For the sake of brevity

of notation we will not use the superscript (3) unless it becomes neces-

sary. Thus from (2.10)

S = n • r , T =n •r~ , U = n • r~n (3.1)
-rirn

where

n= iX + jY +-kZ (3.2)

Equations (2.12) are

r T + Sn (3.3)

T2r + Tn (3.4)

Y&II 12-y

r T + Un (3.5)
-nrI 22-y -

9



(3) (3)

From (2.14) and (2.15) the operators D(3 ) and A are
2

a2  a2  a2D g22 3&2 2g12 aian + g an -n2

A 192 , ac an_)

2 G-- an-t-g2 -g28
+ n{ 1ara @

3

We now multiply equations (3.3) - (3.5) respectively by g22 ' -2g1 2'

gll adding and using equations (2.13) and (2.15) to have

Dr + G3 (rCA2 C + rnA22) = G3n(k1 + k2 ) (3.8)

where

1

2 C3 (2g 1 2T1 2 - g2 2 Tj - g1 lT 2 )

A -A3(2g2T2 2 - g )  (3.9)
2-3 121 - 92 2 11 -1 l22~

C3  g11g2 2 - 62)2

To obtain an expression for k1 + k2 consider equation (2.11) and

- utilize the property that n is orthogonal to r and r, so that

• = r3 (n • r )

" {n = r32( "n )

12-

10



nr = r32(n r )
(3.10)

where all the derivatives with respect to 4 are evaluated at t =

constant. Multiplying Eq. (3.8) scalarly by n and using (3.10), we

get

G3( k2) = (n - r )(gllr2 - 12 12+ g2 2 l) (3.11)

We now propose the following deterministic problem: Let $ and n be

the surface coordinates on the surface t = constant, subject to the

constraints

A 2 0

(3.12)

A2n= 0

Then the Cartesian coordinates x,y,z of the surface satisfy the differential

equations

Dr = G3 (k1 + k2)n (3.13)

The three scalar differential equations for the generation of the Cartesian

coordinates are then

-22xCE - 2g1 2x n + gllx = XR (3.14)

922YC - 2g 1 2y n + glynn = YR (3.15)

922z& - 2g1 2z&n + gllznn m ZR (3.16)

where11

, .-



R = (Xx + Yy + Zz )(g11 r32 - 2g12P 2 + g22r1) (3.17)

and

X (yz -y z

SY =(x nz Y- xz)/VG3 (3.18)

Z = (x y - x y)/VG3

Equations (3.14) - (3.16) form a quasilinear system of partial

differential equations in which the components of r are assumed to be

known. Since the values of x,y,z are known on the basic inner and outer

boundaries (denoted at B and - respectively in Fig. 1), a suitable way

of prescribing r can be to take

r (= C))B + f2(rn)(r ) (3.19)

where fl(0) and f2 (n) are suitable weights having the properties

fl(nB = 1 f =0

f1.) = 0 , f2 (n.) = 1

For exposing the essential nonlinear terms in the factor P we refer

to Eqs. (2.16) - (2.18) in which the r terms have been collected

separately.

Referring to Figure 2, we now solve Eqs. (3.14) - (3.16) for each

- const., on a rectangular plane by prescribing the values of x, y and

z on the lower side (C1) and upper side (C2) which represent the curves

12



on B and respectively. The sides C3 and C4 are the cut lines on which

periodic boundary conditions are to be imposed. The preceding analysis

thus completes the formulation of the problem.

13
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4. Coordinate Transformation (Contraction)

For the purpose of generating coordinates between the space of the

inner and outer boundary which can be distributed in a desired manner,

we consider a coordinate transformation from X x and n a. Let

t C(x) + t

(4.1)
= ni(o) + n

then

= at X = X0, (xo) 0

(4.2)

n = n B at o =o , r(o) = 0

Writing

dX do
A(x) = d e oo) = dn

and denoting the transformed metric tensor as gij, we have

-2 2=x2 + y2 + Z2911 911A " gil x Y x x

" g 1 2 /Bl 'g 12  X 2 + YY + Zz
X22

2 2g 2  ' ,g 2 2  o 0o 0

G 3 /e22 G"3 = gllg2 2 - (' 1 2 ) 2  (4.3)

X-",Y - , z =Z"

" - lit .... . -''-"- ff ,: i'14



k Il + k 2 = ki + k2

R = R/0
2A2

Further noting that

(r -

rc x/OX (4.4)

r a )0rn = (ro -- )0

Using (4.3) and (4.4) in Eqs. (3.14) - (3.16), we have

g22'XX - 2g1 2 Xxo + g1 1xGo = Px + Qxa + X P  (4.5)

-22Yxx 
2 gl2yxo + g11 Yo = Py x+ Qy + YR (4.6)

g2 2zxx - 1 2gz + g 1oo-- Pz +Qz + (4.7)

where

g 22.
p = -- A x

(4.8)

Q

Thus, by choosing X and e arbitrarily we can redistribute the coordinates

In the desired manner. An example of this choice is given in the next

section.



5. An Analytical Example of Coordinate Generation

In this section we shall consider the problem of coordinate genera-

tion between a prolate ellipsoid and a sphere with coordinate contraction

near the inner surface. This problem yields an exact solution of the

equations (4.5) - (4.7).

Let 9 = f B and n = q. be the inner prolate ellipsoid and the outer

sphere respectively. The coordinates which vary on these two surfaces

are E and ;., We now envisage a net of lines = const. and C = const.

on these two surfaces. A curve C1 on the inner surface designated as

= o. is

x = coshq Bcos °

y = sinhnB sin o cost (5.1)

z = sinhB sino sinE

Similarly, the curve C2 corresponding to 0 = o on the outer surface is

x = e cos 0

y = e sin 0 COSE (5.2)

n.

z,- e sino sinE

Based on the forms of the functions x,y,z in (5.1) and (5.2), we

assume the following forms of x,y,z for the surface =

16



x f(o)cos;°

y - *(o)sinc cost (5.3)

z (a)sin osin
i0

The boundary conditions for f and 0 are

f(oB) = coshq B

f(o ) = e

(5.4)

(oB) = sinhq B

(o.) 
-e

Calculating the various derivatives, metric coefficients, and all

other data needed in the equations (4.5) - (4.7), we get on substitution

an equation which has sin2 0 and cos 2  . Equating to zero the coefficients

of sin 2 
O and-cos

2 
o , we obtain

f" +' (5.5)

e +' (5.6)

where a prime denotes differentiation with respect to a. On direct inte-

gration of Eqs. (5.5) and (5.6) under the boundary conditions (5.4),

we get

17
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fc) AeB() + C(5)

Tii

i, f~o) = A B n ( ) 4 (5.8) '

#()= De~ n °

where

IL(e -" coshn B  ) sinh B  ( . a

C (5.9c)

e - sinhn B

TI

B = in[ e ]I/(i -
nB' (5.9b)

e (cshri - sinhnB) (5.9c)Cffi0
e - sinhriB

D =sinhniB (5. 9d)

As an application we may take [ii]

C(X) = ax

TiC) f b(o - OB)Ka

where a and b are constants. Since at

n(oI) =  - n B

hence

n B- n)(0 OB)K (a-"
n()0 

1

18
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By taking a value of K slightly greater than one (K 1.05 or 1.1), we

can have sufficient contraction of coordinates near the inner surface.

For the chosen problem, since the dependence on is simple, we

find that the coordinates between a prolate ellipsoid and a sphere are

x [AeBf(O) + C]cos

eBn(a

y De(O) sincos-

z = De sin~sin•

where A, B, C, and D are given in equation (5.9).

19
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6. Conclusions

A new method for the generation of three-dimensional coordinates

between two arbitrary shaped bodies has been presented. The method is

based on some simple differential-geometric concepts such as the equations

of Gauss and the expressions for the principal curvatures of a surface.

The simplicity of the method lies in solving, at one time, only three

partial differential equations of the two-dimensional type. This aspect

is bound to reduce the working core requirements for a given problem on

a computing machine. Finally the method allows, in a very direct fashion,

the possibility of coordinate redistribution in the desired regions (cf.

Eqs. (4.5) - (4.7)).

An analytic solution of the proposed equations for the case of an

inner prolate ellipsoid and an outer sphere has been presented. This

example shows that one can generate coordinates between two analytically

specified surfaces of simple forms by exact solutions of the proposed

equations.

In this paper the fundamental equations which form a set of con-

straints for the generation of coordinates in the surface are

A 2 C 0

A2

where A2 is the surface Beltrami operator of the second order. It must

be noted that A2 is neither a Laplace operator in the Cartesian plane

(x,y), nor in the Cartesian space (x,y,z). However, in the case of a

Cartesian plane (x,y), when there is no dependence on z, A2 reduces to

the Laplace operator V2 .

20
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Figure 2: Figure l(b) opened in a rectangular plane by imagining
a cut.
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Introduction

The problem of generating a computational grid about an aircraft

configuration has recently been addressed by Ericksson [4] and Lee [7].

In this report the basic steps in a grid generation scheme will be

described. No particular aircraft is considered, but the procedure is

intended to be versatile and able to handle many types of configurations

with only slight changes in the computational space. The primary components

of an aircraft are generally the wings and fuselage. Therefore, these

components determine the basic structure of the computational grid.

The first, and one of the most difficult, task encountered is the

description of the surface coordinates. In the design of various geometric

objects, often paramatric surface patches are joined along specific curves

on the surface of the object. These patches may be familiar quadratic

surfaces, which will be considered here, or surfaces defined by interpolating

polynomials or splines. Of course, the shape of these surface patches

will depend on the type of grid which is to surround the body. The surface1parametrization induces a natural grid system on the body which may not

be best for computational purposes. Thus a method for reparameterizing

the surface patch will be described. This leads to considerable control

over the distribution of surface grid points.

For the general configuration being considered, a single rectangular

computational region will be used. A better distribution of grid points

can often be obtained by adding or subtracting rectangular blocks from

the computational region as noted by Lee et al. [7]. However, the basic

topology of the grid structure remains the same. Slits in the computational

region may be used to represent the horizontal and vertical stabilizers

4
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and any other fin-like components. The nacelles may be incorporated by

removing rectangular blocks from the computational region.

The physical region about the aircraft, from a topological viewpoint,

is obtained by folding the computational region about the body. This folding

results in mesh points with irregular neighborhood structures. Although

the transformation from the computational to the physical region is singular

at such points, no difficulty is encountered in deriving accurate difference

equations for approximating a partial differential equation.

The grid generation schemes discussed here are algebraic with emphasis

on the control of the grid lines. The values of the grid point coordinates

can be used as initial data in an elliptic system which would smooth out

any discontinuities in grid line tangents or ripples caused by the body

or interpolating functions. No particular interpolation procedure will

be stressed. Rather, a general format will be followed which permits

inclusion of polynomial interpolation, splines, and the multi-surface

method developed by Eiseman [2,3].

Coordinate System Defined by the Grid

The arrangement of the grid lines can be visualized by considering

a curvilinear coordinate system about the aircraft body. For fluid flow

calculations it is desirable to have the majority of the grid points located

near the body and in the wake region. A curvilinear coordinate system may

be generated by folding a rectangular region about the body. For example,

a first fold can be made around the front of the body with edges coinciding

with the wing tips and proceeding downstream. Folds at each wing tip then

result in a region enclosing the aircraft as illustrated in Figure 1. The

lines from the aircraft to the outer boundary are lines along which the

coordinate system is singular. A more detailed discussion of this type

At
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of coordinate system has been given by Ericksson [4). This construction

results in an ellipsoidal-cylindrical coordinate system surrounding the

body. The elliptical portion gives good resolution of the area around

the body while the cylindrical portion is used to resolve the wake region.

Surface Grid Points

The coordinates of the grid points on the surface of the aircraft

and on the outer boundary must be compatible with the curvilinear coordinate

system surrounding the aircraft. This will. be illustrated by considering

a simple wing-fuselage configuration. All components are defined using

linear and quadratic equations and the shape of the body can be changed

by redefining only a few basic parameters. Two particular variations are

given in Figures 2 and 3. The outer boundary is depicted in Figure 4.

Even though the surface components are relatively simple, one must

be able to select the grid points according to the requirements of the

problem being solved. For example, one may wish to have a uniform distri-

bution of mesh points or to have a concentration of mesh points in regions

of particular interest. The general problem of determining grid points

on an arbitrary surface given by parametric equations will now be addressed.

Suppose a surface is given by the parametric equation

V = V(s't)

where V = (x,yz) and 0 < s,t < 1. The choice of a finite number of s

and t values will determine the grid points on the surface. This choice

will depend on the desired distribution of grid points. Although inter-

polation on a table of values for s and t could be used, the following

procedure is very simple and effective. We first consider the choice of



s value for a fixed t. A change of variables to a new parameter , with

s = s( ), s'(&) > 0, will be assumed so that equally spaced values can

be used in the computational region. The distribution of grid points along

the t = constant curve can be specified by the arc length derivative

L= IVY(s(),t)l = IVs(S,t)Is'(E).

Thus s(E) must satisfy the differential equation

s(E) = W()IVs(S,t)1 -  (1)

which can be solved by any standard numerical method once an initial condition

is specified. In the numerical solution, the value i(c) is approximated

by the desired spacing between mesh points. The following two-dimensional

example will clarify the general procedure. Let a quadrant of an ellipse

be given by

x = a cos s, y = b sin s, 0 > s >- - 2

suppose equally spaced points are desired. The length of the curve is

approximately

*2

Thus the length of the arc between any two grid points is approximately

K L/(N-l) where N is the number of grid points. Equation (1) then becomes

s = K~a2 sin 2 (s(4)) + b2 cos2(s())]-1, o < &,I
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with initial condition s(ro) = 0. Due to the error in the numerical solution

and the approximation of arc length, some scaling was necessary in order

that s(C1) =-K . Even with this rescaling, the uniform distribution of

grid points along the central vertical coordinate line in Figure 4 attests

to the effectiveness of this technique. This ellipse was used to determine

one of the parameter distributions for the ellipsoidal outer boundary.

Equal spaced values for the other parameter were used since this automatically

concentrated grid points near the wing tips.

The grid points on the fuselage determined the position of one set

of grid lines on the wings. The other set was chosen to concentrate grid

points near the wing tips. The same procedure would be used for any other

fin-like structure projecting from the fuselage.

Flow Field Grid

For regions with smooth boundaries, interpolation has been used exten-

sively for grid generation in two and three-dimensional regions. Given

a set of points P' 2 1 . . . Pn' and a set of parameter values sl , s29

. s., a curve passing through the points Pi. with V(si) = Pi can

be represented by

n

V(s) = j *i(s)P i
i=I

where ti is a function satisfying oi(s.) = 6i.

While Lagrange polynomials could be used for the ,i, they frequently lead

to curves with extreme oscillation and cubic splines are a more commonly

used alternative. When the *i are cubic splines, their derivatives at

s, and sn may be given arbitrarily. Thus the direction of the tangent

vector to the curve at P1 and Pn can be specified. Cubic splines have
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continuous second order derivatives which produces curves sufficiently

smooth for most grid generation problems. In the following applications

the points Pi. i = 2, . . . , n - 1, often do not lie on the body and are

used only to control the general direction of the curve. In this case

the condition on the 4i above can be replaced by

n

YS = 6ij for j = 1 or n and i (s) = 1, i(s) > 0*1 *Ji=l -1

Examples of functions satisfying these conditions are the B-spline basis

functions developed by de Boor [1] and used by Gordon and Riesenfeld [6]

and the basis functions used by Eiseman [3] in his multisurface method.

The latter development is more general and could include basis functions

other than piecewise polynomials. It was observed that the piecewise

quadratic curves of Eiseman are the same as would be generated using

B-splines.

*Returning to the general configuration in Figure 1, all that is presently

given is the grid points on the aircraft surface and on the ellipsoidal

outer boundary. Next a surface of grid points will be constructed in the

wake region behind the aircraft. This will employ interpolating functions.

A set of intersecting curves is constructed as in Figure 5 to connect the

aircraft with the downstream boundary. These are interpolation curves

which are parameterized using surface parameters s and t so that

r= V(st) d A = V(st). Once the basis functions are selected the

two-dimensional blended interpolant of Gordon and Hall [5) completes the

generation of the grid on the wake surface. Such a surface is shown in

Figure 6.
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The grid points on two coordinate surfaces, say r = 0 and r 1, have

been determined. Now the space between the two surfaces, the aircraft-

wake surface and the outer boundary, must be filled with grid points. This

can also be accomplished by interpolation. Two intermediate surfaces are

used to control the interpolating curves. The first consists of points

at a fixed distance along normals to the r = 0 surface. The second surface

contains points on the line segment between these points on the normal

surface and the corresponding points on the outer surface. Thus the interior

interpolation grid points are as depicted in Figure 7. Figure 8 contains

plots of grids constructed about a wing-fuselage configuration. The distribu-

tion of grid points is controlled by the location of the two intermediate

surfaces and the number of coordinate surfaces between each pair of inter-

mediate and boundary surfaces. The first surface must be relatively close

to the aircraft to prevent grid lines connecting the aircraft to the outer

boundary from crossing.

The addition of the other components to the basic wing-fuselage

configuration necessitates extra control surfaces in the interpolation

process. Since some of these control surfaces extend from the aircraft

to the outer boundary, a three-dimensional blended interpolant will be

needed (see [5)). The control surface which would be constructed for a

stabilizer is depicted in Figure 9. The construction of this surface would

essentially duplicate the previous construction of the surface in the wake

region. Note that computationally both surfaces of the stabilizer lie

on the same control surface. The number of nodal points used in the

interpolation scheme for constructing the grid above and below the

stabilizers would be the same. However coordinate values on the upper
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surface would be used in one case while coordinate values on the lower

surface would be used in the other case.

Coordinate Singularities

It was noted previously that the curvilinear coordinate system about

the body has singular lines along which the Jacobian of the transformation

from rectangular to curvilinear coordinates vanishes. These lines were

indicated in Figure 1. Since these points have only four immediate

neighboring grid points, rather than the usual six, it is probably best

to delete these points from the computational process when solving fluid

flow problems. If this is done the grid structure about a singular point

appears as in Figure 10. Only the points on the surface cutting the

singular line are shown. Now all first and second order difference

expressions can be evaluated in the usual manner. This procedure is

certainly simpler than using series expansions to derive separate differ-

ence equations at the singular points. Previous calculations by Mastin,

Ghosh, and Thompson [8] have shown that this technique produces accurate

results in potential and viscous flow problems.
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FIgure 1. Aircraft and flow field.
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Figure 2. Wing-fuselage configuration defined by
elementary surfaces.I r



Figure 3. Wing-fuselage configuration defined by
elementary surfaces.
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Figure 4. Outer boundary of flow field.
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Figure 5. Interpolation curves for wake surface.
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Figure 6. Grid on aircraft and surface extending
to the end of the wake region.
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Figure 8. Crossections of grid about aircraft.



Figure 9. Grid on interpolation surface
for stabilizer.



Figure 10. Grid structure on surface near intersection
with singular line.


